270 research outputs found

    On the density of classes of closed convex sets with pointwise constraints in Sobolev spaces

    Get PDF
    For a Banach space X of R^M-valued functions on a Lipschitz domain, let K(X) ⊂ X be a closed convex set arising from pointwise constraints on the value of the function, its gradient or its divergence, respectively. The main result of the paper establishes, under certain conditions, the density of K(X_0) in K(X_1) where X_0 is densely and continuously embedded in X_1. The proof is constructive, utilizes the theory of mollifiers and can be applied to Sobolev spaces such as H (div,Ω) and W1,p(Ω), in particular. It is also shown that such a density result cannot be expected in general.Peer Reviewe

    Robust Principal Component Pursuit via Inexact Alternating Minimization on Matrix Manifolds

    Get PDF
    Robust principal component pursuit (RPCP) refers to a decomposition of a data matrix into a low-rank component and a sparse component. In this work, instead of invoking a convex-relaxation model based on the nuclear norm and the `1 -norm as is typically done in this context, RPCP is solved by considering a least-squares problem subject to rank and cardinality constraints. An inexact alternating minimization scheme, with guaranteed global convergence, is employed to solve the resulting constrained minimization problem. In particular, the low-rank matrix subproblem is resolved inexactly by a tailored Riemannian optimization technique, which favorably avoids singular value decompositions in full dimen- sion. For the overall method, a corresponding q-linear convergence theory is established. The numerical experiments show that the newly proposed method compares competitively with a popular convex-relaxation based approach.Peer Reviewe

    Several Approaches for the Derivation of Stationary Conditions for Elliptic MPECs with Upper-Level Control Constraints

    Get PDF
    The derivation of multiplier-based optimality conditions for elliptic mathematical programs with equilibrium constraints (MPEC) is essential for the characterization of solutions and development of numerical methods. Though much can be said for broad classes of elliptic MPECs in both polyhedric and non-polyhedric settings, the calculation becomes significantly more complicated when additional constraints are imposed on the control. In this paper we develop three derivation methods for constrained MPEC problems: via concepts from variational analysis, via penalization of the control constraints, and via penalization of the lower-level problem with the subsequent regularization of the resulting nonsmoothness. The developed methods and obtained results are then compared and contrasted

    Uncertainty quantification in image segmentation using the Ambrosio--Tortorelli approximation of the Mumford--Shah energy

    Get PDF
    The quantification of uncertainties in image segmentation based on the Mumford-Shah model is studied. The aim is to address the error propagation of noise and other error types in the original image to the restoration result and especially the reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio-Tortorelli approximation and discuss the existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular methods. Numerical examples illustrate the theoretical findings

    Risk-averse optimal control of random elliptic VIs

    Get PDF
    We consider a risk-averse optimal control problem governed by an elliptic variational inequality (VI) subject to random inputs. By deriving KKT-type optimality conditions for a penalised and smoothed problem and studying convergence of the stationary points with respect to the penalisation parameter, we obtain two forms of stationarity conditions. The lack of regularity with respect to the uncertain parameters and complexities induced by the presence of the risk measure give rise to new challenges unique to the stochastic setting. We also propose a path-following stochastic approximation algorithm using variance reduction techniques and demonstrate the algorithm on a modified benchmark problem

    Risk-averse optimal control of random elliptic variational inequalities

    Full text link
    We consider a risk-averse optimal control problem governed by an elliptic variational inequality (VI) subject to random inputs. By deriving KKT-type optimality conditions for a penalised and smoothed problem and studying convergence of the stationary points with respect to the penalisation parameter, we obtain two forms of stationarity conditions. The lack of regularity with respect to the uncertain parameters and complexities induced by the presence of the risk measure give rise to new challenges unique to the stochastic setting. We also propose a path-following stochastic approximation algorithm using variance reduction techniques and demonstrate the algorithm on a modified benchmark problem.Comment: 31 page

    POD for optimal control of the Cahn-Hilliard system using spatially adapted snapshots

    Full text link
    The present work considers the optimal control of a convective Cahn-Hilliard system, where the control enters through the velocity in the transport term. We prove the existence of a solution to the considered optimal control problem. For an efficient numerical solution, the expensive high-dimensional PDE systems are replaced by reduced-order models utilizing proper orthogonal decomposition (POD-ROM). The POD modes are computed from snapshots which are solutions of the governing equations which are discretized utilizing adaptive finite elements. The numerical tests show that the use of POD-ROM combined with spatially adapted snapshots leads to large speedup factors compared with a high-fidelity finite element optimization
    corecore